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Abstract Data clustering is a fundamental unsupervised
learning task in several domains such as data mining, com-
puter vision, information retrieval, and pattern recognition. In
this paper, we propose and analyze a new clustering approach
based on both hierarchical Dirichlet processes and the gen-
eralized Dirichlet distribution, which leads to an interest-
ing statistical framework for data analysis and modelling.
Our approach can be viewed as a hierarchical extension of
the infinite generalized Dirichlet mixture model previously
proposed in Bouguila and Ziou (IEEE Trans Neural Netw
21(1):107–122, 2010). The proposed clustering approach
tackles the problem of modelling grouped data where obser-
vations are organized into groups that we allow to remain sta-
tistically linked by sharing mixture components. The result-
ing clustering model is learned using a principled variational
Bayes inference-based algorithm that we have developed.
Extensive experiments and simulations, based on two chal-
lenging applications namely images categorization and web
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service intrusion detection, demonstrate our model useful-
ness and merits.
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1 Introduction

A large literature on the analysis, classification, and clus-
tering of data is now available (Jain et al. 2004; Law et al.
2005; Banerjee et al. 2004; Xiang et al. 2008). This is fueled
by the fact that a large number of real-world problems can
be easily approached as categorization tasks. The number of
approaches and techniques is overwhelming. In particular,
many generative models have been proposed for probabilis-
tic classification (Kahn 2004). The Gaussian mixture model
(Li et al. 2006; McLachlan and Peel 2000; Lu and Yao 2005)
is perhaps the most well-known and widely used genera-
tive approach. Although the Gaussian mixture has proven to
be an effective approach for data clustering when the parti-
tions are Gaussian, it is known that this approach can fail in
several real-world problems when the data are clearly non-
Gaussian as deeply discussed and reported in the literature
(Bouguila andZiou 2006, 2007; Shohamet al. 2003). Indeed,
amajor difficulty of generativemodels is that they require the
choice of a parent distribution to model the data. Thus, much
of the work on finite mixture models has focused on deter-
mining appropriate choices for different kinds of data (e.g.
discrete, binary, continuous, directional, etc.). For instance,
we have shown recently that the Dirichlet (Bouguila and
Ziou 2005) and generalized Dirichlet (GD) (Bouguila and
Ziou 2006, 2007) distributions could be good alternatives to
the Gaussian for data modelling. The main advantage of the
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GD over the Dirichlet is that it has a more general covari-
ance structure which makes it more flexible and useful for
a variety of real life applications from different disciplines.
Therefore, in this work, in lieu of considering the classic
Gaussian assumption, we base our work on the GD mix-
ture.

The statistical models proposed in (Bouguila and Ziou
2006, 2007) have been based on finite GDmixtures and then
needed to address challenging learning problems including
model selection (i.e. determination of the optimal number
of components), the choice of an initialization approach to
avoid convergence to saddle points and over- or under-fitting
problems. A recently introduced model provides a new strat-
egy where the number of components is supposed to be infi-
nite which allows to overcome problems related to model
selection (Bouguila and Ziou 2010). This approach, based
on Dirichlet processes, appears currently to offer the best
results in terms of efficiency and model selection accuracy.
Moreover, it avoids classic problems related to initialization
sensitivity and convergence.

This work is an effort to deal with the classification of data
in a flexible fashion and can be viewed as an major exten-
sion of the framework previously developed in (Bouguila
and Ziou 2010). Indeed, in this paper, we go a step fur-
ther by focusing on the problem of modelling grouped data
where observations are organized into groups that we allow
to remain statistically linked by sharingmixture components.
Our solution is based on the adoption of a hierarchical non-
parametric Bayesian framework namely hierarchical Dirich-
let process (Teh et al. 2006; Teh and Jordan 2010), which is
motivated by its promising results shown recentlywhenmod-
elling grouped data generated from various fields. Appropri-
ate learning is a key issue when using generative models
and is a quite difficult task, especially when dealing with
high-dimensional data. Recently, variational Bayes learning
has been shown to be an efficient alternative to both fre-
quentist and purely Bayesian techniques (Fan and Bouguila
2013; Fan et al. 2013). We, therefore, develop a principled
variational approach to learn the parameters of our hierarchi-
cal Dirichlet process of GD distributions model, which can
be viewed as the second major contribution of this research
work. The third contribution concerns the challenging prob-
lems that we have tackled to illustrate the usefulness of
our approach namely images categorization and web service
intrusion detection.

The rest of the article is organized as follows. In Sect. 2
we present the basic hierarchical Dirichlet process mixture
model and its adoption to GD distributions. The model’s
learning approach, based on variational inference, as well
as the complete fitting algorithm are detailed in Sect. 3. Sec-
tion 4 presents and discusses the experiments and simula-
tions conducted to assess the viability and efficiency of the
proposed model. Section 5 concludes the paper.

2 Hierarchical Dirichlet process mixture of GD
distributions

In this section, we introduce our hierarchical Dirichlet
process mixture model of GD distributions, which may also
be referred to as the hierarchical infinite GD mixture model.

2.1 Hierarchical Dirichlet process mixture model

The hierarchical Dirichlet process is built on the Dirichlet
process (Korwar and Hollander 1973; Ferguson 1983) with
a Bayesian hierarchy in which the base distribution of the
Dirichlet process is itself distributed according to a Dirichlet
process.A two-level hierarchicalDirichlet processmodel can
be defined as the following: given a grouped data set X with
M groups, where each group is associated with a Dirich-
let process G j , and this indexed set of Dirichlet processes
{G j } shares a global (or base) distribution G0 which is itself
distributed according to a Dirichlet process with the base
distribution H and concentration parameter γ :

G0 ∼ DP(γ, H)

G j ∼ DP(λ,G0) for each j, j ∈ {1, . . . , M} (1)

where j is an index for each group of the data set. Please
notice that the above hierarchical Dirichlet process can be
readily extended to contain more than two levels.

In this work, the hierarchical Dirichlet process is repre-
sented using the stick-breaking construction (Sethuraman
1994; Ishwaran and James 2001). In the global-level con-
struction, the global measure G0 is distributed according to
the Dirichlet process DP(γ, H) as

G0 =
∞∑

k=1

ψkδΩk ψk = ψ ′
k

k−1∏

s=1

(1 − ψ ′
s)

ψ ′
k ∼ Beta(1, γ ) Ωk ∼ H (2)

where δΩk is an atom at Ωk , and {Ωk} is a set of independent
random variables drawn from H . The stick-breaking variable
ψk satisfies

∑∞
k=1 ψk = 1, and is obtained by recursively

breaking a unit length stick into an infinite number of pieces
such that the size of each successive piece is proportional to
the rest of the stick. Since G0 is the base distribution of the
Dirichlet processes G j and has the stick-breaking represen-
tation as shown in Eq. (2), the atoms Ωk are shared among
all {G j } and only differ in weights according to the property
of Dirichlet process (Teh et al. 2006).

Motivated by (Wang et al. 2011), we also apply the
conventional stick-breaking representation to construct each
group-level Dirichlet process G j as
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G j =
∞∑

t=1

π j tδ� j t π j t = π ′
j t

t−1∏

s=1

(1 − π ′
js)

π ′
j t ∼ Beta(1, λ) � j t ∼ G0 (3)

where δ� j t are group-level atoms at � j t , {π j t } is a set of
stick-breaking weights which satisfies

∑∞
t=1 π j t = 1. Since

� j t is distributed according to the base distribution G0, it
takes on the valueΩk with probabilityψk . Next, we introduce
a binary latent variable Wjtk as an indicator variable, such
that Wjtk ∈ {0, 1}, Wjtk = 1 if � j t maps to the global-level
atom Ωk which is indexed by k; otherwise, Wjtk = 0. Thus,

we can have � j t = Ω
Wjtk
k . Accordingly, group-level atoms

� j t do not need to be explicitly represented. The indicator
variable W = (Wjt1,Wjt2, . . .) is distributed as

p(W|ψ) =
M∏

j=1

∞∏

t=1

∞∏

k=1

ψ
Wjtk
k (4)

Since ψ is a function of ψ ′ according to the stick-breaking
construction of the Dirichlet process as shown in Eq. (2), we
can rewrite p(W) as

p(W|ψ ′) =
M∏

j=1

∞∏

t=1

∞∏

k=1

[
ψ ′
k

k−1∏

s=1

(1 − ψ ′
s)

]Wjtk

(5)

The prior distribution of ψ ′ is a specific Beta distribution
according to Eq. (2)

p(ψ ′) =
∞∏

k=1

Beta(1, γk) =
∞∏

k=1

γk(1 − ψ ′
k)

γk−1 (6)

For the grouped data set X , let i index the observations
within each group j . We assume that each variable θ j i is a
factor corresponding to an observation X ji , and the factors
θ j = (θ j1, θ j2, . . .) are distributed according to the Dirichlet
processG j , one for each j . Then, the likelihood function can
be defined as

θ j i |G j ∼ G j

X ji |θ j i ∼ F(θ j i )
(7)

where F(θ j i ) represents the distribution of the observation
X ji given θ j i . The base distribution H of G0 provides the
prior distribution for the factors θ j i . This setting is known as
the hierarchical Dirichlet process mixture model, in which
each group is associated with a mixture model, and the mix-
ture components are shared among these mixture models due
to the sharing of atoms Ωk among all {G j }.

Since each factor θ j i is distributed according to G j based
on Eq. (7), it takes the value � j t with probability π j t . We
then place a binary indicator variable Z jit ∈ {0, 1} for θ j i .
That is, Z jit = 1 if θ j i is associated with component t and

maps to the group-level atom � j t ; otherwise, Z jit = 0.

Thus, we have θ j i = �
Z jit
j t . Since � j t also maps to the

global-level atom 
k as we mentioned previously, we then

have θ j i = �
Z jit
j t = 


Wjtk Z ji t
k . The indicator variable Z =

(Z ji1, Z ji2, . . .) is distributed as

p(Z|π) =
M∏

j=1

N∏

i=1

∞∏

t=1

π
Z jit
j t (8)

Since π is a function of π ′ according to the stick-breaking
construction of the Dirichlet process as shown in Eq. (3), we
then have

p(Z|π ′) =
M∏

j=1

N∏

i=1

∞∏

t=1

[
π ′
j t

t−1∏

s=1

(1 − π ′
js)

]Z jit

(9)

The prior distribution of π ′ is a specific Beta distribution as
described in Eq. (3) as

p(π ′) =
M∏

j=1

∞∏

t=1

Beta(1, λ j t ) =
M∏

j=1

∞∏

t=1

λ j t (1 − π ′
j t )

λ j t−1

(10)

2.2 Hierarchical infinite GD mixture model

In our work, we focus on a specific form of hierarchical
Dirichlet process mixture model where each observation
within a group is drawn from a mixture of GD distributions.
Since Dirichlet process mixture models are often referred
to as infinite mixture models, the proposed model can then
be considered as a hierarchical infinite GD mixture model.
The motivation of choosing GD mixture is due to its good
modelling performance as shown, for instance, in Bouguila
and Ziou (2006, 2007), Fan and Bouguila (2013), Fan et al.
(2013).

If a D-dimensional random vector Y = (Y1, . . . ,YD) is
distributed according to a GD distribution with positive para-
meters α = (α1, . . . , αD) and β j = (β1, . . . , βD), then its
probability density function (pdf) is defined by

GD(Y|α,β) =
D∏

l=1

Γ (αl + βl)

Γ (αl)Γ (βl)
Y αl−1
l

⎛

⎝1 −
l∑

f =1

Y f

⎞

⎠
γl

(11)

where Γ (·) is the gamma function,
∑D

l=1 Yl < 1 and Yl > 0
for l = 1, . . . , D, αl > 0, βl > 0, γl = βl − αl+1 − βl+1 for
l = 1, . . . , D−1, and γD = βD−1. It is noteworthy that GD
distribution has a more general covariance structure (can be
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positive or negative) than Dirichlet distribution which makes
it more practical and useful.

By applying an interesting mathematical property of the
GD distribution which is thoroughly discussed in Boutemed-
jet et al. (2009), we can use a geometric transformation
to transform the original data point Y into another D-
dimensional data point X with independent features as

GD(X|α,β) =
D∏

l=1

Beta(Xl |αl , βl) (12)

where X = (X1, . . . , XD), X1 = Y1 and Xl = Yl/(1 −∑l−1
f =1 Y f ) for l > 1, and Beta(Xl |αl , βl) is a Beta distribu-

tion defined with parameters (αl , βl). By doing this, the esti-
mation of a D-dimensional GD distribution is transformed to
D estimations of one-dimensional Beta distributions which
may facilitate the inference process for multidimensional
data (Boutemedjet et al. 2009).

Now for the grouped data setX withM groups,we assume
that each D-dimensional data vectorX j i = (X ji1,. . ., X ji D)

is drawn from a hierarchical infinite GDmixture model, then
we have the likelihood function of the proposed hierarchical
infinite GD mixture model with latent variables as

p(X ) =
M∏

j=1

N∏

i=1

∞∏

t=1

∞∏

k=1

[
D∏

l=1

Beta(X jil |αkl , βkl)

]Z jitW jtk

(13)

Next, we need to place prior distributions over parameters
α and β of the Beta distribution. Although Beta distribution
belongs to the exponential family and has a formal conjugate
prior, it is analytically intractable. Thus, we adopt Gamma
distribution to approximate the conjugate prior by assuming
that these Beta parameters are statistically independent as

p(α) = G(α|u, v) =
∞∏

k=1

D∏

l=1

v
ukl
kl

Γ (ukl)
α
ukl−1
kl e−vklαkl (14)

p(β) = G(β|g,h) =
∞∏

k=1

D∏

l=1

hgklkl

Γ (gkl)
βgkl−1e−hklβkl (15)

where G(·) is the Gamma distribution with positive parame-
ters.

3 Variational model learning

Variational inference (Attias 1999; Bishop 2006) is a deter-
ministic approximation technique that is used tofind tractable
approximations for posterior distributions of a variety of sta-
tistical models. The literature of the past decade is abundant
with papers that have considered successfully variational
learning. In this section, we propose a truncated variational

inference framework to learn the stick-breaking representa-
tion of the hierarchical infinite GD mixture model. To sim-
plify notation, we define Θ = (Z,W,ψ ′,π ′,α,β) as the
set of latent variables and unknown random variables. Sim-
ilarly, the set of all observed variables is represented by X .
The central idea in variational learning is to find an approx-
imation q(Θ) for the true posterior distribution p(Θ|X ) by
maximizing the lower bound of the logarithm of themarginal
likelihood p(X ). By applying Jensen’s inequality, this lower
bound can be found as

L(q) =
∫

q(Θ) ln[p(X ,Θ)/q(Θ)]dΘ (16)

In our work, we apply the truncation technique as described
in (Blei and Jordan 2005) to truncate the variational approx-
imations of global- and group-level Dirichlet processes at K
and T , such that

ψ ′
K = 1,

K∑

k=1

ψk = 1, ψk = 0 when k > K (17)

π ′
jT = 1,

T∑

t=1

π j t = 1, π j t = 0 when t > T (18)

where the truncation levels K and T are variational para-
meters which can be freely initialized and will be opti-
mized automatically during the learning process. Moreover,
we adopt a factorial approximation to factorize q(Θ) into
disjoint tractable distributions. Using the truncated stick-
breaking representations and the factorization assumption,
we then have

q(Θ) = q(Z)q(W)q(π ′)q(ψ ′)q(α)q(β) (19)

To maximize the lower bound L(q), we need to make a vari-
ational optimization of it with respect to each of the factors
qi (Θi ) in turn. The general expression for the optimal solu-
tion to a specific variational factor qs(Θs) is given by

qs(�s) =
exp

〈
ln p(X ,�)

〉
i �=s∫

exp
〈
ln p(X ,�)

〉
i �=sdΘ

(20)

where 〈·〉i �=s is the expectation with respect to all the distri-
butions of qi (Θi ) except for i = s.

Therefore, the optimal solutions for the factors of the vari-
ational posterior can then be obtained by applying Eq. (20)
to each of the factor, such that
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q(Z) =
M∏

j=1

N∏

i=1

T∏

t=1

ρ
Z jit
j i t (21)

q(W) =
M∏

j=1

T∏

t=1

K∏

k=1

ϑ
Wjtk
j tk (22)

q(π ′) =
M∏

j=1

T∏

t=1

Beta(π ′
j t |a jt , b jt ) (23)

q(ψ ′) =
K∏

k=1

Beta(ψ ′
k |ck, dk) (24)

q(α) =
K∏

k=1

D∏

l=1

G(αkl |ũkl , ṽkl) (25)

q(β) =
K∏

k=1

D∏

l=1

G(βkl |g̃kl , h̃kl) (26)

where the corresponding hyperparameters in the above equa-
tions can be calculated as the following:

The hyperparameter ρ j i t of the factor q(Z) is calculated
by

ρ j i t = exp(ρ̃ j i t )∑T
f=1 exp(ρ̃ j i f )

(27)

where

ρ̃ j i t =
K∑

k=1

〈Wjtk〉
D∑

l=1

[
(ᾱkl − 1) ln X jil + (β̄kl − 1)

ln(1 − X jil) + R̃kl
] + 〈ln π ′

j t 〉 +
t−1∑

s=1

〈ln(1 − π ′
js)〉

(28)

R̃ = ln
Γ (ᾱ+β̄)

Γ (ᾱ)Γ (β̄)
+ᾱ[Ψ (ᾱ+β̄) − Ψ (ᾱ)](〈 ln α

〉−ln ᾱ
)

+ β̄[Ψ (ᾱ + β̄) − Ψ (β̄)](〈 ln β
〉 − ln β̄

)

+ 1

2
ᾱ2[Ψ ′(ᾱ + β̄) − Ψ ′(ᾱ)]〈(ln α − ln ᾱ)2

〉

+ 1

2
β̄2[Ψ ′(ᾱ + β̄) − Ψ ′(β̄)]〈(ln β − ln β̄)2

〉

+ ᾱβ̄Ψ ′(ᾱ + β̄)(
〈
ln α

〉 − ln ᾱ)(
〈
ln β

〉 − ln β̄) (29)

where Ψ (·) is the digamma function.
The hyperparameter ϑ j tk of the factor q(W) is calculated

by

ϑ j tk = exp(ϑ̃ j tk)∑K
f =1 exp(ϑ̃ j t f )

(30)

where

ϑ̃ j tk =
N∑

i=1

〈Z jit 〉
D∑

l=1

[
(ᾱkl − 1) ln X jil + (β̄kl − 1)

ln(1 − X jil) + R̃kl
] + 〈lnψ ′

k〉 +
k−1∑

s=1

〈ln(1 − ψ ′
s)〉

(31)

The hyperparameters a jt and b jt of the factor q(π ′) are
calculated by

a jt = 1 +
N∑

i=1

〈Z jit 〉, b jt = λ j t +
N∑

i=1

T∑

s=t+1

〈Z jis〉 (32)

The hyperparameters ck and dk of the factor q(ψ ′) are
calculated by

ck = 1 +
M∑

j=1

T∑

t=1

〈Wjtk〉, dk = γk +
M∑

j=1

T∑

t=1

K∑

s=k+1

〈Wjts〉

(33)

The hyperparameters ũkl and ṽkl of the factor q(α) are
calculated by

ũkl = ukl +
M∑

j=1

T∑

t=1

〈Wjtk〉
N∑

i=1

〈Z jit 〉ᾱkl
[
Ψ (ᾱkl + β̄kl)

−Ψ (ᾱkl) + β̄klΨ
′(ᾱkl + β̄kl)(〈ln βkl〉 − ln β̄kl)

]

(34)

and

ṽkl = vkl −
M∑

j=1

T∑

t=1

〈Wjtk〉
N∑

i=1

〈Z jit 〉 ln X jil (35)

The hyperparameters g̃kl and h̃kl of the factor q(β) are
calculated by

g̃kl = gkl +
M∑

j=1

T∑

t=1

〈Wjtk〉
N∑

i=1

〈Z jit 〉β̄kl
[
Ψ (ᾱkl + β̄kl)

−Ψ (β̄kl) + ᾱklΨ
′(ᾱkl + β̄kl)(〈ln αkl〉 − ln ᾱkl)

]

(36)

and

h̃kl = hkl −
M∑

j=1

T∑

t=1

〈Wjtk〉
N∑

i=1

〈Z jit 〉 ln(1 − X jil) (37)
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The expected values in the above formulas are given by

ᾱkl = ũkl
ṽkl

, β̄kl = g̃kl

h̃kl
,

〈Z jit 〉 = ρ j i t , 〈Wjtk〉 = ϑ j tk (38)

〈ln αkl〉 = Ψ (ũkl) − ln ṽkl ,

〈ln βkl〉 = Ψ (g̃kl) − ln h̃kl (39)

〈ln π ′
j t 〉 = Ψ (a jt ) − Ψ (a jt + b jt ) (40)

〈ln(1 − π ′
j t )〉 = Ψ (b jt ) − Ψ (a jt + b jt ) (41)

〈lnψ ′
k〉 = Ψ (ck) − Ψ (ck + dk) (42)

〈ln(1 − ψ ′
k)〉 = Ψ (dk) − Ψ (ck + dk) (43)

Since the solutions to the variational factors are coupled
together through the expected values of other factors, this
optimization process can be solved in a way analogous to the
EM algorithm and the complete algorithm is summarized
in Algorithm 1. The convergence of this variational learn-
ing algorithm is guaranteed and can be monitored through
inspection of the variational lower bound (Bishop 2006).

Algorithm 1Variational learning of hierarchical infinite GD
mixture model.
1: Choose the initial truncation levels K and T .
2: Initialize the values for hyperparameters λ j t , γk , ukl , vkl , gkl , hkl .
3: Initialize the value of ρ j i t by K -Means algorithm.
4: repeat
5: The variational E-step:
6: Estimate the expected values in Eqs. (38–43), use the current dis-

tributions over the model parameters.
7: The variational M-step:
8: Update the variational solutions for each factor using Eqs. (21–26)

and the current values of the moments.
9: until Convergence criterion is reached.

4 Experiments

4.1 Design of experiments

We evaluate the effectiveness of the proposed hierarchical
infinite GD mixture model (referred to as HInGD) on two
challenging real-life problems. The first one concerns visual
scenes classification and more specifically the discrimina-
tion between different breeds of cats and dogs from images.
This task is extremely challenging since cats and dogs are
highly deformable and different breeds may differ only by
a few subtle phenotypic details (Parkhi et al. 2012). The
second application is web service intrusion detection which
has attracted a lot of attention recently. We conducted our
experiments using a computer with Intel’s Core i7 proces-
sor @2.00 GHz. In our experiments, we initialize the global
truncation level K to 600, and the group truncation level
T to 100. This is because in general, the number of clus-

ters in the global level is much larger than the one in the
group level. The initial values of involved hyperparame-
ters are set as the following: (ukl , vkl , gkl , hkl , λ j t , γk) =
(0.25, 0.01, 0.25, 0.01, 0.1, 0.1). These specific choiceswere
chosen according to our experimental results and were found
convenient in our case. As a formal approach to choose the
initial hyperparameters values does not exist, it may be help-
ful in practise to run the optimization several times using dif-
ferent initializations to find a good maximum since multiple
maxima may exist in the variational bound. It is noteworthy
that the Bayesian nature of the proposed learning algorithm
makes it less sensitive to initialization as compared to fre-
quentist techniques for instance.

4.2 Images categorization

4.2.1 Methodology

Image categorization has been the topic of extensive research
in the pastwhichmay bemotivated by its various applications
such as object detection, recognition, and retrieval (Lamdan
et al. 1988;Agarwal andRoth 2002;Matas et al. 2002; Lazeb-
nik et al. 2004; Rasiwasia and Vasconcelos 2008). Here, we
focus on a specific image categorization problem that has
received some attention recently namely the classification
of images representing cats and dogs (Parkhi et al. 2012).
We perform this classification using the proposed HInGD.
Our categorizationmethodology is summarized as following:
first, we extract and normalize PCA-SIFT descriptors1 (36-
dimensional) (Ke and Sukthankar 2004) from raw images
using the Difference-of-Gaussian (DoG) detector (Mikola-
jczyk and Schmid 2004). Then, these extracted image fea-
tures are modelled using the proposed HInGD. Specifically,
each image I j is considered as a “group” and is therefore
associated with an infinite mixture model G j . Thus, each
extracted PCA-SIFT feature vector X ji of the image I j

is supposed to be drawn from the infinite mixture model
G j , where the mixture components of G j can be consid-
ered as “visual words”. A global vocabulary is constructed
and is shared among all groups (images) through the com-
mon global infinite mixture model G0 of our hierarchical
model. This setting matches the desired design of a hier-
archical Dirichlet process mixture model. It is noteworthy
that an important step in image categorization approaches
with bag-of-visual words representation is the construction
of visual vocabulary. Nevertheless, most of the previously
invented approaches have to apply a separate vector quanti-
zation method (such as K -means) to build the visual vocabu-
lary, where the size of the vocabulary is normally chosen
manually. In our approach, the construction of the visual
vocabulary is part of our hierarchical Dirichlet process mix-

1 PCA-SIFT: http://www.cs.cmu.edu/~yke/pcasift.
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 1 Sample cat images from the Oxford-IIIT Pet database. a Abyssinian, b Bengal, c Birman, d Bombay, e British Shorthair, f Egyptian Mau,
g Persian, h Ragdoll

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 2 Sample dog images from the Oxford-IIIT Pet database. a Basset hound, b Boxer, c Chihuahua, d Havanese, e Keeshond, f Pug, g Samyod,
h Shiba inu

ture framework, and, therefore, the size of the vocabulary
(i.e. the number of mixture components in the global-level
mixture model) can be automatically inferred from the data
thanks to the property of nonparametric Bayesian model.
Then, the “bag-of-words” paradigm is employed and a his-
togram of “visual words” for each image is computed. Since
the goal of our experiment is to determine which image cate-
gory (breeds of cats and dogs) that a testing image I j belongs
to, we also need to introduce an indicator variable Bjm asso-
ciated with each image (or group) in our hierarchical Dirich-
let process mixture framework. Bjm denotes that image I j

comes from category m and is drawn from another infinite
mixture model which is truncated at level J . This means that
we need to add a new level of hierarchy to our hierarchi-
cal infinite mixture model with a sharing vocabulary among
all image categories. In this experiment, we truncate J to
50 and initialize the hyperparameter of the mixing probabil-
ity of Bjm to 0.05. Finally, we assign testing images to the
appropriate categories according to Bayes’ decision rule.

4.2.2 Data set

We conducted our experiments of categorizing cats and dogs
using a publicly available database namely the Oxford-IIIT

Pet database (Parkhi et al. 2012).2 This database contains
7,349 images of cats and dogs in totalwith 12 different breeds
of cats and 25 different breeds of dogs. Each of these breeds
contains about 200 images. We randomly divided this data-
base into two halves: one for training (to learn the model and
build the visual vocabulary), the other one for testing. Sam-
ple images from the database are shown in Fig. 1 (cats) and
Fig. 2 (dogs).

4.2.3 Results

In this experiment, our goal is to demonstrate the advantages
of using hierarchical Dirichlet process framework over the
conventional Dirichlet process one, as well as GD distrib-
ution over the Gaussian. Therefore, we compared the cat-
egorization results using the proposed HInGD model with
three other mixture models including infinite GD mixture
(InGD) model, hierarchical infinite Gaussian mixture (HIn-
Gau) model and infinite Gaussian mixture (InGau) model.
All of these models were learned using variational inference.
For the experiments of using InGD and InGau models, the
visual vocabularies were built using the K -means algorithm

2 Available at: http://www.robots.ox.ac.uk/~vgg/data/pets/.
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Table 1 The average categorization performance (%) and the standard
deviation obtained over 30 runs using different approaches

Method Cats Dogs

HInGD 54.72 (1.07) 42.93 (1.13)

InGD 51.25 (1.14) 40.47 (0.99)

HInGau 48.17 (0.96) 36.51 (0.82)

InGau 46.03 (1.08) 34.26 (1.23)

Table 2 The average categorization performance (%) and the standard
deviation obtained over 30 runs using different approaches

Method Cats and Dogs

HInGD 40.78 (1.19)

InGD 38.13 (1.15)

HInGau 35.39 (1.03)

InGau 34.15 (1.12)

and the sizes of the visual vocabularies were manually set
to 500. We evaluated the categorization performance by run-
ning the approach 30 times.

First, we focus on discriminating different breeds of cats
(12 breeds) and dogs (25 breeds), respectively. The average
breed discrimination performances of our approach and the
three other tested approaches are shown in Table 1. Accord-
ing to these results, the proposed HInGD approach was able
to provide the highest categorization accuracies (54.72 % for
cats and 42.93 % for dogs) among all tested approaches. The
differences in accuracy between the HInGD and the other
tested models are statistically significant according to Stu-
dent’s t test (i.e. for different runs, we have observed p values
between 0.017 and 0.038 in the case of discriminating cats
images, and p values between 0.022 and 0.041 for discrimi-
nating dogs images). Moreover,HInGD andHInGau outper-
formed InGD and InGau, respectively, which demonstrates
the merits of using hierarchical Dirichlet process framework
over the conventional Dirichlet process. Better modelling
capabilities of using GDmixture models over Gaussian mix-
tures are also illustrated in Table 1, in terms of higher cat-
egorization accuracies obtained by HInGD and InGD than
HInGau and InGau.

Next, we evaluated our approach and the other three
approaches on discriminating different breeds of cats and
dogs using the whole Oxford-IIIT Pet database (i.e. we do
not separate cat and dog images). The corresponding results
are summarized in Table 2. As we can see in this table, the
proposedHInGD approach again provided higher categoriza-
tion accuracy rate (40.78%) than the other tested approaches
(the differences are statistically significant as shown by a Stu-
dent’s t test, p values between 0.029 and 0.043).

4.3 Web service intrusion detection

4.3.1 Problem statement

Recent advances inweb technologies and the constant growth
of the Internet have led to many online service applica-
tions. Examples include e-commerce, social networks, online
banking, business intelligence, web search engines, etc. An
important feature of these web services is that they are based
on software applications running at the server-side and gen-
erating new web content in an online fashion, which makes
themflexible to exchange information on the Internet (Pearce
et al. 2005; Desmet et al. 2005; Mehdi et al. 2012). The
flexibility of web services poses also vulnerabilities which
make them the targets for attacks (e.g. code injection attacks,
SQL/XML injection, buffer overflow attacks, denial of ser-
vice, etc.) by cyber-criminals who can collect confidential
information from servers or even compromise them (Pinzen
et al. 2010; Dagdee and Thakar 2008; Yee et al. 2007;
Gruschka and Luttenberger 2006; Jensen et al. 2007). Then,
there is an urgent need to protect the servers on which the
applications are running (Zolotukhin et al. 2013; Zolotukhin
and Hamalainen 2013; Jensen et al. 2009; Corona and Giac-
into 2010). Indeed, intrusion detection systems (IDSs) need
to be deployed. An overview of current intrusion detection
techniques and related issues was proposed in Zhou et al.
(2010) and Tsai et al. (2009). Recently, data mining and
machine learning approaches have been used in this growing
area to improve the performance of existing systems (Patcha
and Park 2007; Laskov et al. 2005; Zanero and Savaresi 2004;
Fan et al. 2011; Horng et al. 2011; Khan et al. 2007). The key
idea for these works is to use machine learning techniques
(e.g. decision trees, artificial neural networks, support vec-
tor machines, mixture models, etc.) to train a classifier and
to recognize attacks based on a list of features, which gener-
ally reduces the intrusion detection problem to an adversarial
learning task (Lowd and Meek 2005).

Based on the analysis methods, IDSs are usually classified
into twomain categories:misuse (i.e. signature-based) detec-
tion and anomaly detection systems (Northcutt and Novak
2002). In misuse detection systems, the goal is to detect the
occurrence of attacks that have been previously identified as
intrusions. For this type of IDS, attacks must be known a
priori. Misuse detection can be viewed then as a supervised
learning problem. Alternatively, anomaly detection systems
detect unknown attacks by observing deviations from nor-
mal activities of the system. It is based on the assumption
that intrusive activities are noticeably different from normal
system activities and hence detectable. Data clustering and
unsupervised learning approaches have been widely used to
develop anomaly detection systems. Several of recent clus-
tering approaches quantify deviation from normal behav-
iour using thresholds (see, for instance, Pereira and Jamhour
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2013; Zolotukhin et al. 2013; Zolotukhin and Hamalainen
2013). Unlike these approaches we consider here ourHInGD
to model normal traffic data and then to automatically detect
potential intrusions (i.e. anomalous traffic).

4.3.2 Results

The proposed framework is tested using logs collected from
a real-life web service (from several Apache servers) in a
two-week time interval. The collected data set contains nor-
mal requests, anomalies as well as intrusions. More specifi-
cally, our training data are collected at the beginning and is
composed of 10,000 requests. The majority of these requests
are legitimate, but some are attacks (e.g. cross-site scripting,
SQL injections, buffer overflows, etc.). After using these data
to train our mixture model, by considering 1g, 2g, and 3g
representations (an n-gram is a sub-sequence of n overlap-
ping items from a given sequence) as done in Zolotukhin and
Hamalainen (2013), new requests are considered and classi-
fied as normal or abnormal. More specifically, we performed
our approach as a classifier to detect abnormal requests by
assigning the testing request to the group (normal or abnor-
mal) that most likely generated it. These new requests con-
stitute the testing set and their number is equal to 35,000.

The evaluation of the performance of our approach has
been based on the following measures:

– True-positive rate: the number of correctly detected intru-
sions over the number of intrusions in the testing set.

– False-positive rate: the number of normal requests consid-
ered as intrusions over the total number of normal requests
in the testing set.

– True-negative rate: the number of correctly classified nor-
mal requests over the total number of normal requests in
the testing set.

– False-negative rate: the number ofmisclassified intrusions
over the number of intrusions in the testing set.

– Accuracy: the number of correctly classified requests over
the total number of requests in the testing set.

– Precision: the number of correctly classified intrusions
over the number of intrusions.

To demonstrate the advantages of our approach, we com-
pared it with the SDEM and SDPU approaches in Yamanishi
et al. (2004) based on Gaussian mixture models and ker-
nel mixtures. Moreover, we performed comparisons with the
well-known nearest-neighbour (KNN) technique and three
recent state-of-the art approaches, namely GHSOMs (Zolo-
tukhin et al. 2013), diffusion maps (Kirchner 2010), and the
algorithm proposed in Zolotukhin and Hamalainen (2013),
respectively. For the KNN approach, we have tested several
values of K and found that the best performancewas achieved
when K = 9 according to the experimental results. For other
tested approaches, we adopted the same initial experimental
settings as in their original works. We evaluated the perfor-
mance of each tested approach in detectingweb service intru-
sion with 1g representation and the corresponding results
are illustrated in Table3. According to this table,HInGD has
provided the best performance among all tested approach in
terms of the highest true-positive rate (98.71%), the low-
est false-positive rate (0.95%), the highest true-negative rate
(99.03%), the lowest false-negative rate (0.99%), the high-
est accuracy (98.26%), and the highest precision (98.79%).
The fact that better performance provided by HInGD than
the ones obtained by SDEM and SDPU implies that, the
hierarchical Dirichlet process framework with GD mixtures
works better than the SDEM algorithmwith a finite Gaussian
mixture and the SDPU algorithm with a kernel mixture in
detecting web service intrusion. The performances achieved
by SDEM and SDPU are comparable (the differences are
not statistically significant, p values between 0.39 and 0.51).
The difference is statistically significant when the HInGD is
compared to SDEM and SDPU (p values between 0.037 and
0.048 for all evaluation measurers), respectively. Moreover,
HInGD performed better than GHSOMs, and the approaches
proposed inKirchner (2010) andZolotukhin andHamalainen
(2013) demonstrate the merits of using our approach over
these state-of-the art approaches in web service intrusion
detection. We may also observe that in Table3, the KNN

Table 3 Performance (%) of using different approaches with 1g representation in detecting web service intrusion

HInGD SDEM SDPU KNN GHSOMs Kirchner (2010) Zolotukhin and
Hamalainen
(2013)

True-positive rate 98.71 97.90 97.91 95.02 98.01 98.00 98.04

False-positive rate 0.95 1.00 1.01 1.33 1.02 1.07 1.03

True-negative rate 99.03 98.56 98.50 94.14 98.60 98.55 98.65

False-negative rate 0.99 1.02 1.03 2.51 1.07 1.24 1.06

Accuracy 98.26 97.87 97.85 94.38 97.70 97.74 97.79

Precision 98.79 98.02 98.08 94.66 98.08 98.03 98.15
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Table 4 Performance (%) of using different approaches with 2g representation in detecting web service intrusion

HInGD SDEM SDPU KNN GHSOMs Kirchner (2010) Zolotukhin and
Hamalainen
(2013)

True-positive rate 98.72 97.97 97.98 95.09 98.01 98.00 98.04

False-positive rate 0.94 1.01 1.02 2.22 1.02 1.06 1.03

True-negative rate 99.07 98.60 98.65 94.35 98.60 98.56 98.68

False-negative rate 0.97 1.02 1.03 2.43 1.04 1.24 1.10

Accuracy 98.32 97.92 97.90 94.56 97.76 97.74 97.79

Precision 98.87 98.11 98.13 94.73 98.09 98.08 98.18

Table 5 Performance (%) of using different approaches with 3g representation in detecting web service intrusion

HInGD SDEM SDPU KNN GHSOMs Kirchner (2010) Zolotukhin and
Hamalainen
(2013)

True-positive rate 98.79 98.09 98.08 95.15 98.08 98.03 98.05

False-positive rate 0.94 1.02 1.03 2.13 1.01 1.06 1.02

True-negative rate 99.11 98.65 98.66 94.41 98.65 98.63 98.68

False-negative rate 0.96 1.05 1.05 2.39 1.04 1.15 1.10

Accuracy 98.69 97.92 97.91 94.77 97.88 97.77 97.81

Precision 98.96 98.17 98.18 94.85 98.17 98.09 98.19

approach has provided the worst performance among all
tested approaches. This can be explained by the fact that
KNN approach has a suboptimal generalization power and
is not robust to noisy data, also. Furthermore, we have tested
the performance of our approach in detecting web service
intrusion with 2-, and 3-g representation and the results are
shown in Tables 4 and 5. According to these tables, we can
see that the difference between the results obtained using
the three representations is not important in our case. The
results shown demonstrate also that our statistical framework
is promising. Future works could be devoted to the analysis
of the influence of the features representations on the results.

5 Conclusion

Our main goal in this paper, which we believe we have
reached, was to develop a flexible statistical model for data
modelling and classification. Our scheme is based on a pow-
erful nonparametric Bayesian approach namely hierarchical
Dirichlet process and a flexible probability density func-
tion namely the GD distribution, and a principled variational
learning approach. The proposed framework has been shown
to be statistically plausible, principled and well behaved and
then can deal with many real-world problems. Indeed, it has
provided state-of-the art results on two challenging applica-
tions namely visual objects categorization and web service
intrusion detection. It is noteworthy that the proposed model
is clearly scalable and appropriate for applications generating

large scale data. We are currently investigating several future
works related to the proposed model such as integrating fea-
ture selection to improvemore its generalization capabilities,
and extending the learning approach to online settings to take
into account dynamic data.
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